On graph-(super)magic labelings of a path-amalgamation of isomorphic graphs

نویسندگان

  • T. K. Maryati
  • Tunku Abdul Rahman
چکیده

A graph G = (V (G), E(G)) admits an H-covering if every edge in E(G) belongs to a subgraph of G isomorphic to H. The graph G is H-magic if there exists a bijection f : V (G)∪E(G)→ {1, 2, 3, . . . , |V (G)∪E(G)|} such that for every subgraph H ′ of G isomorphic to H, ∑ v∈V (H′) f(v) + ∑ e∈E(H′) f(e) is constant. Then G is H-supermagic if f(V (G)) = {1, 2, 3, . . . , |V (G)|}. Let {Gi}i=1 be a finite collection of graphs and each Gi contains a path P i n on n vertices called a terminal path. The path amalgamation Amal{Gi, P i n, k} is formed by taking all of the Gi’s and identifying their terminal paths. Let G be a connected graph. In this paper, we study G-(super)magic labelings of Amal{Gi, P i n, k} where Gi ∼= G. We give a sufficient condition for Amal{Gi, P i n, k} to be G-(super)magic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed cycle-E-super magic decomposition of complete bipartite graphs

An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) +  ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...

متن کامل

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

Mixed cycle-E-super magic decomposition of complete bipartite graphs

An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ∑νεV (H) f(v) + ∑νεE (H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥...

متن کامل

Enumerating super edge-magic labelings for the union of non-isomorphic graphs

A super edge-magic labeling of a graph G = (V, E) of order p and size q is a bijection f : V ∪E → {i} i=1 such that (1) f(u)+ f(uv)+ f(v) = k ∀uv ∈ E and (2) f(V ) = {i}pi=1. Furthermore, when G is a linear forest, the super edge-magic labeling of G is called strong if it has the extra property that if uv ∈ E(G), u′, v′ ∈ V (G) and dG(u, u′) = dG(v, v′) < +∞, then f(u) + f(v) = f(u′) + f(v′). I...

متن کامل

H-supermagic labelings of graphs

A simple graph G admits an H-covering if every edge in E(G) belongs to a subgraph of G isomorphic to H. The graph G is H&minus;magic if there exists a bijection f : V (G) [ E(G) ! {1, 2, 3, &middot; &middot; &middot; , |V (G) [ E(G)|} such that for every subgraph H0 P of G isomorphic to H. G is said to be H &minus; supermagic if f(V (G)) = {1, 2, 3, &middot; &middot; &middot; , |V (G)|}. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010